Fitorreguladores y Microorganismos Eficientes Autóctonos en la Calidad Fisiológica de Semillas de Pimiento (Capsicum annuum)
DOI:
https://doi.org/10.70171/byzx6a68Palabras clave:
citoquinina, estrategias de germinación, hormonas vegetales, pretratamiento de semillasResumen
Justificación: las semillas de pimiento son el punto de partida para la producción agrícola, y su calidad es un factor determinante para el éxito del cultivo. Objetivo: evaluar el efecto de fitorreguladores y microorganismos eficientes autóctonos sobre la calidad fisiológica de semillas de pimiento (Capsicum annuum). Metodología: diseño completamente aleatorizado con arreglo factorial 2 × 4, evaluando dos tiempos de remojo (2 y 4 horas) y cuatro dosis de fitorreguladores (2,5 cc de citoquinina L⁻¹ de agua, 2,5 cc de citoquinina L⁻¹ de agua + 5,0 cc de EMA’s L⁻¹ de agua, 5,0 cc de giberelina L⁻¹ de agua, 5,0 cc de giberelina L⁻¹ de agua + 5,0 cc de EMA’s L⁻¹ de agua). Se utilizaron ocho tratamientos con tres réplicas cada uno. Se evaluó el índice de velocidad y porcentaje de germinación, así como índice de velocidad y porcentaje de emergencia. Resultados: las semillas tratadas con giberelina durante 4 horas fueron las más rápidas en germinar, seguidas por el tratamiento de 2 horas. Ambos tratamientos, lograron mayores porcentajes de germinación. La combinación de giberelina con EMA’s durante 4 horas alcanzó el mayor índice de velocidad de emergencia, seguida por la combinación a 2 horas. En todos los casos, los tratamientos con giberelina mejoraron la emergencia de las semillas. Conclusión: aunque la giberelina fue la más rápida para la germinación, la combinado con EMA’s fue más eficaz para mejorar la emergencia, lo que sugiere que ambos tratamientos tienen efectos complementarios en diferentes fases del proceso de desarrollo de la semilla.
Descargas
Referencias
Aremu, A. O., Fawole, O. A., Makunga, N. P., Masondo, N. A., Moyo, M., Buthelezi, N. M., ... & Doležal, K. (2020). Applications of cytokinins in horticultural fruit crops: Trends and future prospects. Biomolecules, 10(9), 1222. https://doi.org/10.3390/biom10091222 DOI: https://doi.org/10.3390/biom10091222
Armada, E., Leite, M. F., Medina, A., Azcon, R., & Kuramae, E. E. (2018). Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS microbiology ecology, 94(7), fiy092. https://doi.org/10.1093/femsec/fiy092 DOI: https://doi.org/10.1093/femsec/fiy092
Bagale, P., Pandey, S., Regmi, P., & Bhusal, S. (2022). Role of plant growth regulator “Gibberellins” in vegetable production: An overview. International journal of horticultural science and technology, 9(3), 291-299. https://doi.org/10.22059/ijhst.2021.329114.495
Bhatla, S. C., & Lal, M. A. (2023). Seed dormancy and germination. In Plant Physiology, Development and Metabolism (pp. 625-640). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5736-1_28 DOI: https://doi.org/10.1007/978-981-99-5736-1_28
Cano-González, M. Á., Ayil-Gutiérrez, B. A., Delgado-Martínez, R., Osorio-Hernández, E., Rangel-Lucio, J. A., & Poot-Poot, W. A. (2021). Physiological potential of piquin pepper seeds in response to pregermination treatments. Ciência e Agrotecnologia, 45, e019521. https://doi.org/10.1590/1413-7054202145019521 DOI: https://doi.org/10.1590/1413-7054202145019521
Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11(3), 259. https://doi.org/10.3390/plants11030259 DOI: https://doi.org/10.3390/plants11030259
Castro-Camba, R., Sánchez, C., Vidal, N., & Vielba, J. M. (2022). Plant development and crop yield: The role of gibberellins. Plants, 11(19), 2650. https://doi.org/10.3390/plants11192650 DOI: https://doi.org/10.3390/plants11192650
Costa, C. J., Meneghello, G. E., Jorge, M. H. A., & Costa, E. (2021). The importance of physiological quality of seeds for agriculture. Colloquium Agrariae, v. 17, n. 4, p. 102-119, ago. 2021. http://dx.doi.org/10.5747/ca.2021.v17.n4.a452 DOI: https://doi.org/10.5747/ca.2021.v17.n4.a452
EL Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., ... & Abdelhamid, M. T. (2022). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4, 765068. https://doi.org/10.3389/fagro.2022.765068 DOI: https://doi.org/10.3389/fagro.2022.765068
El-Maarouf-Bouteau, H. (2022). The seed and the metabolism regulation. Biology, 11(2), 168. https://doi.org/10.3390/biology11020168 DOI: https://doi.org/10.3390/biology11020168
Farooq, M. A., Ma, W., Shen, S., & Gu, A. (2022). Underlying biochemical and molecular mechanisms for seed germination. International Journal of Molecular Sciences, 23(15), 8502. https://doi.org/10.3390/ijms23158502 DOI: https://doi.org/10.3390/ijms23158502
Gough, R. E. (2020). Seed quality: basic mechanisms and agricultural implications. CRC Press. DOI: https://doi.org/10.4324/9781003075226
Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., ... & Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35(3), 177-200. https://doi.org/10.1080/87559129.2018.1514623 DOI: https://doi.org/10.1080/87559129.2018.1514623
Hassan, Z. M., Mana, H. A., & Abdullah, M. Q. (2021). Study of some physiological characteristics of pepper plant treated with gibberellin. International Journal of Agricultural & Statistical Sciences, 17. https://connectjournals.com/03899.2021.17.1885
ISTA Secretariat. (2024). Estándar de Acreditación ISTA para Análisis y Muestreo de Semillas. International Seed Testing Association. https://bit.ly/4fdPQph
Longo, C., Holness, S., De Angelis, V., Lepri, A., Occhigrossi, S., Ruta, V., & Vittorioso, P. (2020). From the outside to the inside: New insights on the main factors that guide seed dormancy and germination. Genes, 12(1), 52. https://doi.org/10.3390/genes12010052 DOI: https://doi.org/10.3390/genes12010052
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Martínez Solis, J., Virgen Vargas, J., Peña Ortega, M. G., & Santiago Romero, A. (2010). Índice de velocidad de emergencia en líneas de maíz. Revista mexicana de ciencias agrícolas, 1(3), 289-304. https://www.scielo.org.mx/pdf/remexca/v1n3/v1n3a2.pdf
Navarro, J. M., & Morte, A. (2024). Arbuscular mycorrhizal fungi as biofertilizers to increase the plant quality of Sour-Orange seedlings. Agronomy, 14(1), 230. https://doi.org/10.3390/agronomy14010230 DOI: https://doi.org/10.3390/agronomy14010230
Panda, D., & Mondal, S. (2020). Seed enhancement for sustainable agriculture: an overview of recent trends. Plant Arch, 20(1), 2320-2332. https://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/2320%20-2332%20(407).pdf
Rafique, M., Naveed, M., Mustafa, A., Akhtar, S., Munawar, M., Kaukab, S., ... & Salem, M. Z. (2021). The combined effects of gibberellic acid and rhizobium on growth, yield and nutritional status in chickpea (Cicer arietinum L.). Agronomy, 11(1), 105. https://doi.org/10.3390/agronomy11010105 DOI: https://doi.org/10.3390/agronomy11010105
Ramos Cabrera, E. V., Delgado Espinosa, Z. Y., & Solis Pino, A. F. (2024). Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12(8), 1591. https://doi.org/10.3390/microorganisms12081591 DOI: https://doi.org/10.3390/microorganisms12081591
Samarah, N. H., Al-Quraan, N. A., Massad, R. S., & Welbaum, G. E. (2020). Treatment of bell pepper (Capsicum annuum L.) seeds with chitosan increases chitinase and glucanase activities and enhances emergence in a standard cold test. Scientia Horticulturae, 269, 109393. https://doi.org/10.1016/j.scienta.2020.109393 DOI: https://doi.org/10.1016/j.scienta.2020.109393
SANTOS, L. F., Lana, R. P., Silva, M., Veloso, T. G., Kasuya, M. C. M., & Ribeiro, K. G. (2020). Effective microorganisms inoculant: Diversity and effect on the germination of palisade grass seeds. Anais da Academia Brasileira de Ciências, 92, e20180426. https://doi.org/10.1590/0001-3765202020180426 DOI: https://doi.org/10.1590/0001-3765202020180426
Sawicka, B., Pszczółkowski, P., Barbaś, P., Skiba, D., & Bienia, B. (2022). The Role and Importance of Microorganisms in Environmental Sustainability. Microbial Biotechnology: Role in Ecological Sustainability and Research, 107-133. https://doi.org/10.1002/9781119834489.ch7 DOI: https://doi.org/10.1002/9781119834489.ch7
Sundareswaran, S., Ray Choudhury, P., Vanitha, C., & Yadava, D. K. (2023). Seed quality: Variety development to planting—An overview. Seed Science and Technology: Biology, Production, Quality, 1-16. https://doi.org/10.1007/978-981-19-5888-5 DOI: https://doi.org/10.1007/978-981-19-5888-5_1
Taylor, A. G. (2020). Seed storage, germination, quality, and enhancements. In The physiology of vegetable crops (pp. 1-30). Wallingford UK: CABI. https://doi.org/10.1079/9781786393777.0001 DOI: https://doi.org/10.1079/9781786393777.0001
Thakur, M., Tiwari, S., Kataria, S., & Anand, A. (2022). Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae, 305, 111355. https://doi.org/10.1016/j.scienta.2022.111355 DOI: https://doi.org/10.1016/j.scienta.2022.111355
Tombegavani, S. S., Zahedi, B., Mousavi Fard, S., & Ahmadpour, A. (2020). Response of germination and seedling growth of pepper cultivars to seed priming by plant growth regulators. International Journal of Horticultural Science and Technology, 7(1), 59-68. https://doi.org/10.22059/ijhst.2020.274293.275
Vaishnav, D., & Chowdhury, P. (2023). Types and function of phytohormone and their role in stress. In Plant Abiotic Stress Responses and Tolerance Mechanisms. IntechOpen. https://doi.org/10.5772/intechopen.109325 DOI: https://doi.org/10.5772/intechopen.109325
Wang, G., Ren, Y., Bai, X., Su, Y., & Han, J. (2022). Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants, 11(23), 3200. https://doi.org/10.3390/plants11233200 DOI: https://doi.org/10.3390/plants11233200
Yang, Y., Gao, C., Ye, Q., Liu, C., Wan, H., Ruan, M., ... & Cheng, Y. (2024). The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper (Capsicum annuum L.). Plants, 13(20), 2887. https://doi.org/10.3390/plants13202887 DOI: https://doi.org/10.3390/plants13202887
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2023 María Cristina Martínez-Sotelo (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.